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Highlights
Awareness of light as a pollutant is grow-
ing, and with emerging technologies our
understanding of how light pollution
uniquely impacts migratory species
throughmechanisms of negative or pos-
itive phototaxis, and at times physiologi-
cal responses, has grown.

Extinguishing and dimming lights is a first
priority to reducing ecological impacts,
but light can be modified when needed
Light pollution is a global threat to biodiversity, especially migratory organisms,
some of which traverse hemispheric scales. Research on light pollution has
grown significantly over the past decades, but our review of migratory organisms
demonstrates gaps in our understanding, particularly beyond migratory birds.
Research across spatial scales reveals the multifaceted effects of artificial light
on migratory species, ranging from local and regional to macroscale impacts.
These threats extend beyond species that are active at night – broadening the
scope of this threat. Emerging tools for measuring light pollution and its impacts,
as well as ecological forecasting techniques, present new pathways for conser-
vation, including transdisciplinary approaches.
across multiple dimensions, including
correlated color temperature ormore ho-
listic color spectra. Responses to light
color and intensity are not uniform across
taxonomic groups.

Light pollution can affect nocturnal and
diurnal animal migrants by disrupting
their movements at various scales: at
local scales through collisions with lit
structures, at regional scales by altering
stopover sites and the aerial connectivity
of the night sky, and at macroscales
through exposure to sky glow and al-
tered phenology.
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History and introduction to light pollution
For hundreds of years, and likely even millennia, humans have observed disruptions of
animal behavior by light (e.g., fire) [1–4]. However, artificial light was only referenced as a
pollutant and entered the lexicon of peer-reviewed scientific literature in the past 50 years
(Figure S1 in the supplemental information online). It was not until 1985 that the term
'photo pollution' was examined with reference to the effects of light on wildlife [5]. Yet,
for decades light pollution (see Glossary) and similar terms primarily occupied studies of
astronomy [6,7]. Eventually this term evolved, and astronomical light pollution was de-
fined in relation to specific effects on the night-time viewing of celestial bodies. In 2004
Longcore and Rich set out to define light pollution with regard to ecology, coining the
term ecological light pollution. Their landmark review amplified the importance of study-
ing the effects of light pollution on wildlife and the need to distinguish it from astronomical
light pollution [8].

At the intersection of light pollution and ecology, some of the first examples of the impacts of ar-
tificial light, before the use of the term light pollution, date as far back as the late 1800s –many of
these early observations relate to migratory animals, often birds. Events that were hard to miss
often included the fatal collisions of birds with lit lighthouses, illuminated ships, oil platforms,
and other prominently lit structures – yielding some of the most gripping and grave examples of
these impacts [1,9–14]. The iconic Washington Monument, a 169 m marble obelisk that defines
the night-time skyline of Washington DC, USA, claimed 576 birds on 12 September 1937, includ-
ing 17 warbler species [10]. This staggering event occurred in only an hour and a half, killing an
average of 6.4 birds per minute. We can jump forward 80 years in time and see that, tragically,
strikingly similar instances still occur. In the spring of 2017 nearly 400 birds were killed when
they collided with a single brightly lit high-rise in Galveston, Texas, USA [15]. Again, in fall of
2021, 226 migratory birds were killed in window collisions near One World Trade Center in
New York City, USA, sparking outcry [16].
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx https://doi.org/10.1016/j.tree.2022.12.006 1
© 2022 Elsevier Ltd. All rights reserved.

https://orcid.org/0000-0003-4220-117X
https://doi.org/10.1016/j.tree.2022.12.006
CellPress logo


Trends in Ecology & Evolution

Glossary
Astronomical light pollution: artificial
lights that impede the view of stars and
other celestial bodies caused by light
that is either directed or reflected
upward.
Ecological forecasting: a tool that
predicts changes in ecosystems,
behaviors, or organismal movements in
response to environmental drivers such
as climate variability, weather conditions,
pollution, and/or habitat change and
phenology. Forecasts can be developed
to predict phenomena in near-term
(seconds to days) or long-term (months
to years) future intervals.
Ecological light pollution: artificial
light that disrupts the natural pattern of
light and dark in ecosystems, whether
through chronic or periodically increased
illumination, unexpected changes in
illumination, and direct glare.
Light pollution: artificial light that
shines where it is neither wanted nor
needed.
Sky glow: brightening of the night sky
through natural and anthropogenic
causes. Natural causes include sunlight
reflected off the Moon and Earth,
auroras, zodiacal light, starlight
scattered in the atmosphere, and
background light from faint, unresolved
stars and nebulae. Anthropogenically
caused sky glow can be greatly
magnified by specific atmospheric
conditions such as low cloud ceilings,
fog, and mist.
It is estimated that as many as a billion birds die each year due to collisions with buildings – with
artificial light acting as an amplifying agent [17]. However, light attraction is not only a problem for
birds: mammals, reptiles, amphibians, fish, and invertebrates face some of the same pressures
[8], yet light may have differential impacts across taxa or even species [18–20]. Although animal
migration has been studied for centuries [21], and light pollution more recently [22–25], studies
at the intersection of these two topics are sparse, particularly for non-avian taxa. Given rising
awareness of the anthropogenic impact of ecological light pollution on migratory wildlife, we re-
view the effects of light pollution during migration to outline the current state of knowledge and
identify gaps.

Defining migration
We have adopted the following four criteria to center our review on an objective definition of mi-
gration that could be systematically applied (adapted from [26]): migration is a movement that
is (i) persistent, (ii) of a greater scale and greater distance than a movement during daily activities,
(iii) spurred by seasonal conditions or restraints such as movement between nonbreeding and
breeding grounds, and (iv) leads to a redistribution of populations. Using these criteria, it was
clear that the movements of some species would be excluded from our review. For example,
we excluded the diel movements of aquatic invertebrate species, such as Daphnia, that make
regular movements up and down through the water column. Although these movements are
stimulated by light [27], and more recently impacted by artificial light [28,29], they fail to fulfill the
second and third criteria of our adopted definition.

There are many examples of lights impacting migratory species during non-migratory phases of
their life cycle, including sea turtles [30], mule deer [31], salmon [32], andmoths [33]. For example,
seabirds (including Procellariiformes), the majority of which are migratory, display positive photo-
taxis to land-based light pollution which has been shown to cause mass mortality [34]. In 1963,
McFarlane described the positive phototaxis of hatchling Atlantic loggerhead sea turtle (Caretta
caretta) to a nearby roadway lit by mercury vapor lights, resulting in 90 hatchings being crushed
by traffic and only 18% making it to the sea [35]. Although these examples and others like it contex-
tualize our understanding of ecological light pollution, they do not directly shape our understanding of
the impact light pollution has on individuals or populations during migration.

Rate of light pollution growth and research
Across the past 100 years, much of the globe has seen a steady increase in artificial lighting. Over
the past half-century light pollution has grown at 3–6% per year [36] and has continued to grow at
~2.2% per year over the past 10 years [37]. Although much of the world was lit by oil lamps until
transitioning to gas lamps in the 19th century, rural and urban centers remained relatively dark
compared to current standards [38]. The first major increase in light use and light pollution
began with the advent of the light bulb and electric streetlamps in 1879 [38]. From there, we
saw continued developments in the lighting industry and continued brightening of the night
sky. The invention of light-emitting diodes (LEDs) in 1962 spurred ultra-efficient lighting, whereby
almost all the supplied energy could be converted to light [38]. By 2001, two-thirds of the global
human population lived with light pollution [39], and by 2016 the MilkyWay was not visible to one-
third of the population worldwide [40].

With the development of new lighting technologies, lighting has become more energy efficient
and more cost-effective. However, as affordability increased, light consumption and associated
light pollution increased to a greater extent – thus the cost savings are not entirely realized
[126]. By extension, this rapid growth leads to an ever-increasing amount of light pollution and
its deleterious effects on both human health [42] and wildlife [25,43,44]. This principle is not
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unique to light pollution and is an example of what is known in economics as a Jevon's paradox
[41]. More importantly, it likely suggests that technological advances in lighting alone will not be
effective in reducing impacts on wildlife, and could have the opposite effect.

Approaching this problem with three spatial domains
Light pollution acts as an attractant, and in some instances as a repellent, that can negatively affect
wildlife migration by disrupting, disorienting, and at times reshaping the timing of their journey – this
disruption occurs across multiple spatial scales. For this reason we examine the effects of
light pollution on migration at the local, regional, and macroscales (Figure 1).

Local scale effects
At the local scale, the negative effects of light pollution on migration have been most prominently
measured by bird collisions with windows, communication towers, offshore vessels, and count-
less other built structures around the globe through data collected by collision monitoring, sur-
veys, and citizen science programs [9,17,45–47]. Collisions abound, particularly in well-lit cities
in the USA, such as Chicago, Dallas, Houston, and New York City [48,49]. Across 6 years, the
Post Tower, a colorfully lit 41-story skyscraper, in Bonn, Germany, was found to be responsible
for >900 night-time bird causalities [50]. Similarly, in Argentina, Rebolo-Ifrán et al. measured bird
collisions with built structures through the use of citizen science data both at national and local
scales [47]. These data are important because 10% of bird species inhabit Argentina alone,
and collision data outside North America are crucial [47]. On the campus of the National School
of Higher Studies (ENES) of the National Autonomous University of Mexico located in León,
Mexico, Uribe-Morfín et al. led a citizen science study that measured the number of collisions
on campus, and migratory birds accounted for 59% of collisions [51].

One of the most data-rich examples of bird collision monitoring occurred at McCormick Place
Convention Center in Chicago, Illinois, USA, located on the shore of LakeMichigan (Figure 1). Be-
cause mortality data on bird collisions are typically lacking, particularly long-term data [45], the
unique collections conducted at McCormick Place Convention Center offer crucial insights [52].
Since 1978, daily and consistent bird collision monitoring has been conducted around the
building in spring and fall seasons, and resulted in the recording of more than 40 000 dead
birds. Importantly, in addition to these crucial collections documenting where and when species
of migrants collided, since 2000 detailed records describing interior window illumination were
gathered. It was clear that mortality was highest when the lights were turned on, particularly
during large nocturnal migration events associated with winds that concentrated birds along
the Chicago lakeshore. All told, it was estimated that bird mortality could be reduced by ~60%
at this site by decreasing window illumination to the minimum levels recorded [49]. This study
showed strong support for a relationship between nocturnal migration magnitude and urban bird
mortality mediated by light pollution and local atmospheric conditions [49]. At 21 buildings in Min-
neapolis, Minnesota, USA, the area of lit glass on a building was the largest predictor of bird mor-
tality [53,54]. This research highlights not only that the external artificial lighting of built structures
affects migratory species but also that illumination from interior lighting can have a dramatic effect.

Although lights do not directly causemortality in avianmigrants, they can dramatically alter the be-
haviors of in-flight migrants – this is particularly apparent at the annual Tribute in Light memorial
hosted every September 11th in lower Manhattan, New York City, USA (Figure 2A). With a total
of 88 spotlights sculpted to represent the Twin Towers (44 lights per tower), on some autumn
nights thousands of migrants can be seen circling, calling, and appearing and vanishing in and
out of the bright lights [55]. What these pictures do not show is the magnitude of the impact.
Using radar remote sensing across 7 years, it was estimated that flight behaviors of 1.1 million
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 3
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Figure 1. Effects of light pollution on
migratory birds at local, regional
and macroscales, using Chicago
Illinois, USA, as a case study. Ligh
pollution can negatively affect migrants
across multiple scales throughout thei
journey at the local (e.g., collisions with
windows and building structures), re-
gional (e.g., the distribution and abun-
dance of migrants in the air and on the
ground, decreased connectivity), and
macroscales (e.g., sky glow and potentia
exposure to light pollution). What are the
costs at each scale? Although we presen
our review of these scales from finest to
broadest in the text, disruptions for mi-
grants may logically occur from broades
to finest spatial scales. The illustration de-
picts how light pollution disrupts behav-
ior, using Chicago, Illinois, USA, as an
example, for nocturnally migrating birds
At the macroscale, the sky glow from
the city acts as an attractant that draws
migrants away from their migratory
routes. At the regional scale (offshore
from Chicago over Lake Michigan), the
migrants become disoriented from the
light pollution and continue to be pulled
into the city. Finally, at the local scale
there is a risk of collision with McCormick
Place because its large glass windows are
illuminated, and even reflect off the surface
of the lake, thus exacerbating their impac
[49]. Illustrated by Debby Kaspari.
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Figure 2. Examples of the negative effects of light pollution on migratory behavior across taxa. (A) Nocturnal songbirds are attracted to the September 11th
Tribute in Light Memorial in New York City, USA [55]; (B) grasshoppers flock to the glow of Las Vegas, USA, disrupting their multigenerational movements [74]; (C) reduced
light pollution in urban and rural areas improves the connectivity of migratory bats [76]; and (D) light trespass can interrupt diurnal migration in monarch butterflies (Danaus
plexippus) [86]. Illustrated by Debby Kaspari.

Trends in Ecology & Evolution
migrants were altered by these spotlights [55]. Nevertheless, mortality, by comparison with
McCormick Place, was minimal. This can largely be attributed to actions taken to mitigate the
negative impact. At the Tribute in Light, the lights are extinguished each time 1000 birds are visually
detected. The result is a dramatic shift in flight activity – during illumination, peak densities regularly
reached more than 20-fold those of surrounding baselines, and at times 150-fold. More startling,
these disruptions all occur in one of themost photo-polluted cities in North America, demonstrating
the capacity for disruption, even in already bright areas.

Turning lights on and off is not necessarily a new practice. Instead, it is one of the oldest andmost
straightforward tools for mitigation [56]. Reports from lighthouses throughout the early 1900s
documented, at times, tens of thousands of migrants circling the glowing and revolving beams
of light designed to warn sailors. As lighthouses shifted towards strobed beacons, reports of
fewer migrant attraction events soon followed [57]. Although the need for lighthouses has largely
passed, other high-rise towers have sprung up over the past century, namely communication
towers. Mandated under aviation safety guidelines per the International Civil Aviation Organization
(ICAO) obstacle light requirements, structures greater than 45 m must be marked with lights or
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 5
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sometimes paint. It is estimated that 7 million birds die annually in North America [17] owing to
communication towers, with lights serving as a local attractant – where the tower, or often the
guy wires of the tower, delivers the fatal blow [9]. Lighting patterns play an important role in mit-
igating this impact [58]. Lighting also elevates the vocal activity of migrating birds [55,59,60], and
this flight calling behavior predicts vulnerability to light pollution via fatal collisions [52]. With com-
munication towers firmly implanted on the global landscape, understanding how light color, inten-
sity, and flashing pattern influence attraction is crucial, especially given the complex effects that
differing atmospheric conditions can have on these patterns [49,61,62].

Threats are not limited to terrestrial habitats. Globally, light pollution along coastlines can have
negative impacts on reef and coastal ecosystems as well as on local sessile and migratory spe-
cies. The Mediterranean Sea, Red Sea, Persian Gulf, and seas of South-East Asia include some
of the most photo-polluted coastlines [63]. Even offshore, migratory species may face the threat
of light pollution through fisheries, energy production platforms, and cruise ships [46,63,64]. At-
traction to these sources can create episodic mortality events through bird collisions with built
structures or exhaustion through endless circling, or even cause indirect effects through changes
in prey density and greater risk of predation [46,63].

Regional scale effects
For birds, urban parks and urban green spaces, surrounding and within urban centers, unequiv-
ocally provide important habitat for migrants [65] and often yield high species richness [66,67],
but is their use higher than expected? This is precisely what Zuckerberg et al. found, showing
novel use of anthropogenic habitats [68]. In North America, ~71% of terrestrial birds are consid-
ered to be migratory, and of the migratory species, 80% migrate at night [48]. Examining those
that migrate at night, ~49% are passerines, and 76% of those passerines breed in forest habitats
[48,69]. Why were so many forest species residing in seemingly suboptimal forested habitats?
La Sorte et al. set out to address this question using community science observations (eBird)
from 40 long-distance migrants [70]. By pairing these data with visible infrared imaging radiome-
ter suite (VIIRS) day/night band (DNB) measures of upward radiance (section on Methods for
quantifying light pollution), they found that the diurnal abundance of nocturnal migrants was
higher in and around urban areas, and concluded that urban light sources broadly shape
migrant distributions across the landscape. The evidence suggests that nocturnally migrating
passerines are more strongly affected by light pollution compared to other nocturnally migrating
bird species [71].

Using a wholly different sensing platform (weather surveillance radar), McLaren et al. similarly
found that migrant densities increased with increasing proximity to bright areas in the northeast-
ern USA (asmeasured by ratio of zenith artificial sky luminance to natural sky brightness), but den-
sities decreased at more local scales [72]. These impacts may extend into airspaces above urban
areas, but potentially in unexpected ways, and migrants typically fly higher over urban areas than
over more rural areas [73]. These opposing relationships suggest broadscale attraction, but
potential local scale repulsion for stopover, whichmay suggest that brightly lit areas are perceived
as suboptimal stopover habitats by migrants.

However, not only birds flock to urban centers – insects are also drawn to city lights. In 2019
massive waves of grasshoppers (primarily Trimerotropis pallidipennis) were observed leaving
vegetated areas as the sun set and taking flight in the direction of the brightest US city,
Las Vegas, Nevada, USA [74]. More than 45 million grasshoppers were on the move on a single
night, and city lights acted as a broad ecological trap that reshaped the regional distribution of
biomass (Figure 2B). In Canberra, Australia, plagues of Bogong moths (Agrotis infusa), a species
6 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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that makes an upwards of 1000 km journey, can become entrapped en route by brightly lit
buildings, including the capital's Parliament House, thus delaying or ending migration for
some individuals altogether [75].

In the case of bats, light pollution was shown to have a negative impact on the spatial connectivity
of several migratory or partially migratory insectivorous bats in Lille, France, including species in
the genera Pipistrellus and Myotis. Laforge et al. found that reduction in the radiance of an area
increased the connectivity among bat populations in both natural and urban areas, and high-
lighted that light pollution can exacerbate regional fragmentation and reshape the movement of
populations across the landscape [76] (Figure 2C). Conversely, Korpach et al. found, by tracking
the Eastern whip-poor-will (Antrostomus vociferus) with global positioning system (GPS) units
during migration, that their en route stopover locations were primarily in darker areas (e.g., near
rural areas), and they avoided brightly lit urban centers [77]. Light pollution from urban centers
can fragment the dark skies, imposing additional challenges during an already energy costly pro-
cess such as migration. The transformation of the night sky through light pollution may not fit the
natural paradigm of habitat loss, but it may have similar ecological consequences for some organ-
isms, particularly at large scales.

Macroscale effects
Given that migrants traverse a diversity of habitats and geographies, is the migratory phase in fact
the period of greatest concern with regard to exposure to light pollution? Examining 298 bird spe-
cies spanning six continents, Cabrera-Cruz et al. used range maps of species breeding and non-
breeding ranges and regions of passage where species only occur during migration. They found
higher exposure to light pollution during the migratory phases, particularly in the western hemi-
sphere [78]. Satellite remote sensing layers [e.g., VIIRS and the Defense Meteorological Satellite
Program (DMSP); section on Methods for quantifying light pollution for more information] deliver
global coverage that enables quantification of areas of greatest light pollution, and more recently
reveal how it is changing [79,80]. Integrating measures with commensurately broad ecological
datasets is crucial for mapping threats. When considering migratory birds, it is clear that geogra-
phy and seasonality are the crucial dimensions that drive the spatial distribution of migrants
[81]. Regarding light pollution and migratory birds, not only the amount of light is important
but also where that pollution is located relative to the passage of migrants. Pairing VIIRS mea-
sures and one of the first continental uses of weather surveillance radar data, Horton et al.
ranked the 125 largest cities in the USA to quantify the seasonal exposure of passing migratory
birds to light pollution, and demonstrated that the level of threat reflects a combination of size,
brightness, and migration intensity [48]. This catalog of cities ranked by exposure threat has
already served as a guide for light pollution mitigation, and has concentrated efforts in areas
of high light pollution exposure (e.g., Lights Out Texas) – but more research, beyond the
USA, is imperative.

Not just a nocturnal problem
It may seem obvious to focus on nocturnal migratory species when exploring the impacts of eco-
logical light pollution, but recent evidence suggests this may underestimate the growing effects of
light pollution. Light pollution can disrupt daily and seasonal movements that rely on the natural light
cycle. This anthropogenic change can affect cues for the arrival times of migrants (phenology),
change behavior (i.e., foraging, reproduction, daily movements), alter hormone production, and
produce changes in circadian rhythms [82,83].

Purple martins (Progne subis), a long-distance diurnal migratory species, spend their non-
breeding phase in South America, and many individuals roost at night in urbanized areas.
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 7
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Using small, lightweight geolocators [84], devices designed to log and measure environmental
light-data, Smith et al. found that greater exposure to lights at night shifted migration phenology,
and individuals exposed to the most light pollution advanced their spring initiation by up to 8 days
[85]. These migrants subsequently arrived 8 days earlier to their breeding sites – a migration that
spans upwards of 3000 km. Of the 155 birds studied, 31% were exposed to light pollution on
their wintering grounds. Similarly, monarch butterflies (Danaus plexippus), another diurnal mi-
grant, had their circadian rhythms altered by simulated light trespass – light that falls or emanates
beyond its intended purpose (Figure 2D). Rhythms were altered so severely that they could be
stimulated to migrate at night in the presence of light pollution [86]. Light pollution has also
been found to shift the emergence of primary resources (e.g., bud formation, leaf-out dates) on
which the timing of migration may crucially depend, potentially resulting in a phenological mis-
match between arrival and resources [87]. Clearly, the impacts of light pollution do not only
alter the behaviors of those moving under the cover of 'darkness'.

Methods for quantifying light pollution
Light pollution itself is not a uniform problem. Variation in lighting intensity, color, duration, and
whether the source is static or pulsing, can vary the extent to which wildlife are impacted by
light pollution at the local, regional, and macroscales [82]. Quantifying light pollution requires
tools that can be applied to an enormous range of scenarios, from individual lamps to continental
maps. Although some studies deliver compelling results from 'lights on' versus 'lights off' con-
trasts [49,55], predictive models and syntheses require quantitative characterization of stimuli
[88]. Sky quality meters (SQMs) [89] have been widely applied to measure the zenith luminance
(Figure 3) of the night sky, but this practicemay be inappropriate for studyingmigratory responses
to light pollution. Zenith luminance is an insensitive measure of light pollution and it does not local-
ize light sources. The broad aperture of SQMs is problematic for quantifying light pollution near
the horizon. Imaging sensors are more expensive, but they provide thousands of localized lumi-
nance measurements per image.

Scene luminance can be measured with consumer digital cameras; published methods enable
radiometric calibration of these sensors [90–92]. However, the Bayer color filters in consumer
cameras require additional effort for spectral calibration and pixel interpolation. Monochromatic
astronomical cameras offer excellent radiometric sensitivity, and each pixel provides the same
measurement. Precision optical filters can be added to deliver measurements with standardized
spectral characteristics. Interchangeable lens systems enable selection of the field of view and
light-gathering capacity. With fisheye lenses, cameras can characterize the entire celestial hemi-
sphere in a single image (e.g., Sky Quality Camera) [93–95]. Cameras flown on drones can char-
acterize scene luminance from the perspective of a bird, bat, or insect [96]. At a considerably
higher price, spectrometers can be used to more acutely parse light pollution beyond simple
measures of correlated color temperature (CCT) and can be used to evaluate the composition
of light pollution across wavelengths [97], which is important in assessing differential species or
taxonomic responses to light pollution (e.g., [62,98–101]).

Satellite data have characterized the global footprint of light pollution. The DMSP provided an-
nual measures of visible and near-IR light from 1992 to 2013 at 3000 m spatial resolution [102].
The VIIRS DNB sensor provides daily, global measurements of nocturnal visible and near-IR
light at a native resolution of 740 m [102]. Although satellites measure upward radiance,
models have been developed to translate these data into estimates of sky glow and light tres-
pass [40,103,104]. There have been calls for specialized multispectral satellite sensors opti-
mized for light pollution studies [105], and potential tools are emerging to fill these additional
needs [106].
8 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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Figure 3. Overview of light measurement terminology with international system (SI) units of light intensity and color for use in wildlife research. Whether
measures are collected at local or macroscales, researchers should consider whether measures of illuminance or luminance are best suited for the taxa and migration
events of interest. For instance, luminance is likely the relevant measure for active avian migration attraction, orientation, or disruption (depicted by the migratory bird
and moth silhouettes), whereas illuminance may be most appropriate for understanding shifts in migration connectivity, foraging, phenology, among other behaviors
shaped by light densities [88]. It is imperative that these distinctions are understood in the early development of essential studies on the impacts of light pollution on
animal migration. We have included common units of measure, definitions, and a visual representation of how wildlife may interact with or perceive these lighting
elements in the intensity of light box (above). In addition to measuring illuminance or luminance, it is important to understand and measure the composition of
correlated color temperature (CCT) because species may have differential responses to different colors. We show a spectrum of white light on a scale from warm
(1000 K) to cool (10 000 K) for simple comparison in the color of light box.
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Ecological forecasting as an emerging tool for action
Biodiversity and ecosystem crises driven by climate and land-use change have pushed ecolo-
gists to embrace a more predictive approach to data–model integration for the purpose of fore-
casting ecological patterns and processes [107,108]. In the scope of light pollution, near-term
ecological forecasting tools create a pathway for targeted action. However, such forecasts
must match the temporal and spatial scale of the phenomenon. In the case of avian migration,
mass movements may span hundreds of kilometers, where activity levels vary tremendously at
the local scale and from night to night – and by extension the interactions of migrants with light
pollution also vary tremendously. Similarly, the rapid emergence of millions of insects, such as
the synchronous emergence of up to 88 million mayflies (Hexagenia) from aquatic environments,
can place vast swarms of organisms in proximity to light pollution [109]. Understanding their
physiology and environmental conditions that cue their development can provide a predictive
framework for understanding this intersection [109]. Van Doren and Horton showed that nightly
bird migration could be predicted across the contiguous USA, matching the scale needed for dy-
namic action [110]. Predictive performance was largely driven by atmospheric conditions, and air
temperature, barometric pressure, andwind speed and direction, among other variables of geog-
raphy and seasonality, led the way. Estimates of hundreds of millions of birds forecast at a con-
tinental scale were not uncommon, demonstrating the scope and potential benefit of undertaking
lights-out actions. Expanding this application and potential conservation actions, Lippert et al.
used similar datasets to design a forecasting system to predict bird migration across western
Europe using 22 weather radars from the European weather radar network across Belgium,
France, Germany, the Netherlands, and Switzerland [111].

From large-scale measures of bird migration in North America, we have come to understand that
nocturnal migration is not evenly distributed across space and time. Although migration seasons
may span months in any one area, the bulk of migration occurs during only a few nights – on
Box 1. Convergent research: addressing this societal problem with transdisciplinary collaborations

How can new technical knowledge (such as ecological forecasting) be translated into effective public policy and behavioral
change to address a societal problem such as light pollution? Scholarship on theories of the policy process has a robust
literature that has grappled with this problem for decades [118–120]. Of primary relevance to the interaction of light pollution
and migratory wildlife is how coalitions of policy actors (such as advocates and decision-makers) who focus on policy within
ecological domains can incorporate new knowledge to facilitate policy change [121]. Migration forecasts have the potential to
alter the belief systems of policy actors by making the negative impacts of light pollution more evident and accessible, thus
changing the understood benefit/cost ratio of efforts to decrease the overall impact by targeted light reductions, and
broadening stakeholder and policymaker appreciation for the impact of light pollution on migratory species.

Effective utilization of convergent research for improving public policy requires that we better understand how, when, and
why participants in the policy process respond to new technical information. In part, this response depends on whether
the new information has an impact on the shared belief systems of the coalitions of actors who advocate for policies and out-
comes, thereby stimulating policy learning and effective advocacy for policy change [122]. The adoption and learning from
technical innovations such as ecological forecasting is contingent on alignmentwith the goals and values of the relevant policy
actors within an issue domain (i.e., are the implications of the forecasting consistent with the values and interests of policy
actors?), and is independent of the technical accuracy of the forecasts. One notable example of the impacts of technical
knowledge in an ecological policy controversy concerns the effects of forestry practices and wildfires on the turbidity of Lake
Tahoe in California, USA [123]. However, examples of specific impacts of new technical knowledge on policy learning and
change are rare [121], in part because the beliefs of policy actors tend to be anchored in deeply held values that are resistant
to change [124,125].

The case of light pollution provides an important opportunity to engage in transformational research that involves a wide
array of stakeholders in the co-design, selection, and development of data products that are useable by decision-makers,
policy activists, and the broader public [107]. By gathering systematic data on individuals and stakeholder organizations,
scientists can learn more about how beliefs, perceptions, decisions, and behaviors can influence the adoption of ecolog-
ical forecasting in ways that lead to sustainable public policy.

10 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx

CellPress logo


Trends in Ecology & Evolution

Outstanding questions
• Why are organisms attracted to light?
Although the evidence is unequivocal
that some nocturnal animals are
attracted to light, we still lack a
complete mechanistic understanding
to explain the cause. Such an
understanding could help to guide
mitigation strategies.

• How much could be learned about the
ecological impacts of lights at night
through studies of animal perception of
brightness and spectrum? As lights are
becoming both brighter and often
bluer, which dimensions of lighting
should be prioritized to mitigate
disruption of nocturnal migrants? As it
stands, recommendations for mitigation
leverage an incomplete understanding
of these factors – factors that may
show strong species-to-species or
habitat-to-habitat variation.

Are there thresholds or trigger points at
which increases in the brightness of
lights at night non-linearly increase the
impacts on a breadth of animal taxa?

• What is the fitness consequence of at-
traction to light pollution beyond mor-
tality? Although our most salient
measures of the toll of light pollution
come in the form of monitoring fatal
collisions, the effects may penetrate
well beyond instantaneous events. At-
traction may carry additive deleterious
effects throughout full annual cycles –
our estimates of the adverse effects
may be woefully inadequate.

If data were available for a wider range of
taxa, would they show similar patterns of
mortality at local scales and behavioral
effects at regional and macroscales?

• Are the few existing studies of carry-
over effects of light pollution during
migration indicative of general impacts
across phases of the annual cycle
and on different taxa?

• Is animal migration changing in
fundamental ways due to artificial light?

• What are the impacts of light pollution
on animal migration when measured in
conjunction with other environmental
pollutants such as air pollution?
average ~10.0 nights in spring and 10.9 in the fall [112]. Horton et al. show that real-time fore-
casts can capture these high-intensity periods, thus offering a reliable and dynamic approach
for recommending lights-out warnings with 1–3 day lead times [112]. However, although the
strength of such forecasts comes from their dynamism, it may also be a detriment. Subscribing
to forecast alerts may require additional personnel, technology, and infrastructure to automate
action. Although forecasting bird migration is technically possible, among other taxa, it remains
to be seen whether it is feasible to evoke appropriate and effective human action in response
to those forecasts (see Box 1 for pathways forward).

Concluding remarks
The remarkable efforts of community and professional scientists have yielded extensive evidence
of the impacts of light pollution on migratory animals, particularly birds, over the past two de-
cades. Nonetheless, significant data gaps remain across all spatial scales and especially for
non-avian migratory species (see Outstanding questions).

There is a pressing need for more small-scale and large-scale datasets that quantify the mortality
of migrating animals caused directly and indirectly by light pollution. At the local scale, a coordi-
nated and standardizedmonitoring effort to quantify the impacts of light pollution is needed.With-
out these data, it is difficult to know to what extent light pollution contributes to the ongoing
precipitous declines in the populations of migrants [113]. Given the weight of evidence regarding
the impacts of light pollution, public policy changes that curtail the impacts of nocturnal lighting
might be expected to be forthcoming. However, we know frommodels of public policy formation
(Box 1) that evidence of an ecological problem will not inevitably lead to new policy. A concerted
effort to create transdisciplinary convergence targeted at achieving policy outcomes requires ex-
pertise in political science and an understanding of the social systems that create those policies
[114].

It is important to note that light pollution does not affect migration in isolation. Light pollution orig-
inates from anthropogenic activities that generate other forms of environmental pollution such as
air pollution, airborne toxic chemicals, water pollution, noise pollution, and increased human de-
velopment [71,115–117]. Light pollution can interact with each factor, adversely affecting migra-
tion, and can even intensify the effects of airborne pollutants during and even beyond migration
through a broad array of behavioral and physiological effects that can hinder survival and repro-
ductive success during the breeding season [117]. In addition, all these factors can be exacer-
bated by climate change and land-use change, two of the largest threats impacting on
biodiversity globally. However, one difference with light pollution is that, theoretically, it could be
fully and quickly reversed – lights can be turned off.
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